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Abstract:
We report the feasibility of a combined approach of very low low tidal volume (VT) and mild 
therapeutic hypothermia (MTH) to decrease the ventilatory load in a severe COVID-19-related acute 
respiratory distress syndrome (ARDS) cohort. Inclusion criteria was patients ≥18‑years‑old, severe 
COVID‑19‑related ARDS, driving pressure ∆P >15 cmH2O despite low-VT strategy, and extracorporeal 
therapies not available. MTH was induced with a surface cooling device aiming at 34°C. MTH was 
maintained for 72 h, followed by rewarming of 1°C per day. Data were shown in median (interquartile 
range, 25%–75%). Mixed effects analysis and Dunnett’s test were used for comparisons. Seven 
patients were reported. Ventilatory load decreased during the first 24 h, minute ventilation (VE) 
decreased from 173 (170–192) to 152 (137–170) mL/kg/min (P = 0.007), and mechanical power (MP) 
decreased from 37 (31–40) to 29 (26–34) J/min (P = 0.03). At the end of the MTH period, the VT, 
P, and plateau pressure remained consistently close to 3.9 mL/kg predicted body weight, 12 and 26 
cmH2O, respectively. A combined strategy of MTH and ultraprotective mechanical ventilation (MV) 
decreased VE and MP in severe COVID-19-related ARDS. The decreasing of ventilatory load may 
allow maintaining MV within safety thresholds.
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Introduction

Protective mechanical ventilation (MV) 
is a lifesaving therapy. This approach 

reduces mortality in acute respiratory distress 
syndrome (ARDS).[1] In patients with very 
low respiratory system compliance (CRS), 

the low‑VT strategy can generate driving 
pressure ∆P and plateau pressures (Pplat) 
higher than the harmful limits, and very 
low‑VT (VT <4 mL/kg of predicted body 
weight [PBW]) is recommended.[2,3] Still, 
it may lead to unfavorable consequences 
such as severe respiratory acidosis. Thus, 
extracorporeal CO2 removal (ECCO2‑R) is 
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usually an adjuvant therapy.[4,5] However, the availability 
of extracorporeal respiratory support is scarce, especially 
in limited resource settings.[6]

Therapeutic hypothermia is the controlled decrease of 
body temperature for clinical use. Hypothermia induces a 
hypometabolic state, which is helpful in many situations 
such as cardiopulmonary bypass, after cardiac arrest, 
among others. Therapeutic hypothermia decreases global 
oxygen consumption and CO2 production, which might 
benefit severe ARDS, reducing the ventilatory load in 
patients with very low CRS. In these conditions, a very 
low‑VT could be used.

Our primary endpoint was to investigate the effects 
of ultraprotective ventilation combined with mild 
therapeutic hypothermia (MTH) on ventilatory load 
in severe COVID‑19‑related ARDS patients, refractory 
to MV, prone position, and neuromuscular blockade. 
Therefore, the secondary endpoints were to evaluate 
effects on gas exchange and safety of combined strategies.

Case Report

Ethical approval for this study was obtained from Servicio 
de Salud Metropolitano Central Ethics Committee in 
Santiago, Chile on the date of July 14, 2021 with approval 
number of 423/2021 on the date of July 14, 2021, with 
approval number of 423/2021,” and informed consent 
was obtained from the next of kin. We included patients 
equal to or older than 18 admitted due to SARS‑CoV‑2 
respiratory failure to a dedicated COVID‑19 ICU between 
July 1st, 2020, and July 31st, 2021. We included patients with 
severe COVID‑19‑related ARDS and one of the following 
criteria for more than 6 hours: failure to maintain ∆P <15 
cmH2O despite VT <6 mL/kg; or a PaO2/FIO2 ratio <80 
mmHg; or an arterial blood pH <7.2 with an arterial partial 
pressure of carbon dioxide of at least 65 mmHg. In all cases, 
extracorporeal therapies were not available. We excluded 
patients with uncontrolled superinfection, active bleeding, 
signs of severe brain injury, or end‑of‑life care.

In our institution, MTH is proposed as a compassionate 
treatment. Hypothermia was induced by Blanketrol® 
III (Cincinnati Sub‑Zero) automated surface cooling 
device, aiming for 34°C servo‑controlled core body 
temperature. Core body temperature was measured 
by an esophageal probe. MTH is maintained for 72 h, 
followed by a rewarming phase of 1°C per day until 
normothermia (36°C), based on previous reports of MTH 
in ARDS.[7,8]

We routinely use low VT targeting ∆P <15 cmH2O and 
active heather humidifiers in severe ARDS. VT was 
progressively lowered to obtain a ∆P <15 cmH2O, aiming 
at 4 mL/kg PBW in volume‑controlled ventilation. 

Positive end‑expiratory pressure (PEEP) set so as not to 
exceed a Pplat of 30 cmH2O. FIO2 was adapted to obtain 
an SaO2 between 88% and 95% and a PaO2 55–80 mmHg. 
Once VT ≈ 4 mL/kg was achieved, respiratory rate (RR) 
was lowered, although maintaining pH ≥7.2 and 
PaCO2 <60 mmHg.

Demographic and clinical data were recorded, including 
daily arterial blood gases, ventilatory parameters, 
temperature, and tissue perfusion markers (arterial lactate, 
central venous oxygen saturation, and venous‑to‑arterial 
CO2 gradient). Gas exchange measurements were 
corrected to the patient’s core body temperature at 
the time of blood sampling. The ventilatory load 
was measured with minute ventilation (VE) and 
the previously reported comprehensive formula for 
mechanical power (MP).[9] Lymphocyte count, C‑reactive 
protein, ferritin, and D‑dimer were registered before and 
after MTH. We actively monitored the development of 
new bacterial and fungal superinfections and bleeding.

All analyses were performed with GraphPad Prism® 9.5.0. 
Normality distribution was assessed by Anderson–Darling 
test, and data were shown in median (interquartile range, 
25%–75%). Mixed effects analysis and Dunnett’s test were 
used for comparisons. Significance was set at P < 0.05.

One hundred and seventy severe COVID‑19 patients 
were screened, and 7 (5 males and 2 females) were 
enrolled. Their median age was 54‑years‑old (44–58), 
PBW was 68 kg (60–72 kg), 85.7% had comorbidities: 
Four patients had morbid obesity, and two had arterial 
hypertension. All subjects were in prone position, with 
deep sedation and neuromuscular blockade, and 6 
received recruitment maneuvers. Median PaO2/FIO2 
ratio was 98 mmHg (72–113), PaCO2 was 69 (68–73), VT 
was 5.4 ml/kg PBW (5–5.9), ∆P was 16 cmH2O (15–18), 
Pplat 31 cmH2O (30–33), PEEP was 14 cmH2O (13–15), CRS 
was 19.4 ml/cmH2O (17.9–25.4), and RR was 34/min (32–
34) at baseline. In addition, five patients had septic shock, 
5 acute kidney injury (3 required renal replacement 
therapy), and one received therapeutic plasma exchange.

The baseline temperature was 37.4°C (37–37.6), reaching 
the target temperature within 69 min (52–84). After 48 h of 
MTH, VT decreased a 29.6% (95% confidence interval [CI]: 
13.1%–38.7%, P < 0.01), ∆P decreased 31% (95% CI: 
9.8%–52.7%, P < 0.01), and PaCO2 decreased 13.6% (95% 
CI: 1.2%–26.1%, P = 0.034), without changes in CRS. 
Ventilatory load had a significant decrease during the 
first 24 h, as shown by reduction of VE in 12% (95% CI: 
1%–32%, P = 0.007) and MP in 14% (95% CI: 6.8%–21%, 
P = 0.002). At the end of the MTH period, the VT, ∆P, and 
Pplat remained consistently close to 3.9 mL/kg PBW, 
12 and 26 cmH2O, respectively. Survivors had a slow 
improvement in oxygenation, and slight (no significant) 
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increase in VT (close to 4.4 mL/kg PBW, P = 0.6) after 
rewarming [Figure 1].

At the end of MTH period, there was a significant 
decrease in C‑reactive protein (232 [171–243] to 
11 [10–30] mg/L, P = 0.04), and a trend to decrease 
procalcitonin (0.56 [0.24–0.93] to 0.24 [0.18–0.26] ng/mL, 
P = 0.08), ferritin (1540 [848–1782] to 829 [658–889] 
ng/mL, P = 0.14), and D‑dimer (445 [388–1025] to 
330 [220–735] mg/mL, P = 0.23).

None of the global dysoxia markers worsened over 
time [Figure 2]. Three patients presented bacterial 
superinfections (Pseudomona aeruginosa and Klebsiella 
pneumoniae identified in tracheal cultures) and one 
hemoptysis.

Five patients survived till hospital discharge, and two 
patients died due to multiple organic failure. MV was 
discontinued on day 60 (46–64), tracheostomy was 
removed on day 71 (57–75), supplementary oxygen was 
discontinued on day 95 (88–107), and discharged home 
on day 100 (92–108) after admission.

Discussion

We report a compassionate use of MTH for severe 
COVID‑19‑related ARDS that allowed a very low‑VT 

strategy to reduce ∆P, Pplat, and ventilatory load over 
the lungs (VE and MP). In some severe ARDS patients, 
it is challenging to preserve appropriate gas exchange 
while maintaining protective MV. In these cases, very 
low‑VT combined with MTH allows minimizing the 
mechanical load on lungs with profoundly reduced 
CRS, allowing a slow recovery of lung function, and 
reasonable survival. CRS lower than 30 mL/cmH2O is a 
known independent predictor of mortality in COVID‑19 
ARDS.[10] The protective pathophysiological effects of 
MTH on the lungs have been reported in preclinical and 
small clinical studies.[7,8,11,12] Interestingly, MTH granted 
a marked reduction in ventilatory load due to the use of 
very low‑VT and ∆P within safe limits, allowing a slow 
and sustained improvement in gas exchange, such as 
those described in other ultraprotective MV cohorts.[3,4]

The main risks related to MTH are nosocomial infections, 
which occurred in almost half of the patients. Bleeding 
was infrequent. Both risks are present in other rescue 
therapies that permit very low VT combined with 
ECCO2‑R

®.[13,14] Both complications must be closely 
monitored during MTH.[15]

Limitations
The small number of patients might lead to type II error. 
Second, we did not measure cardiac output, which would 
have provided data on hemodynamical repercussions of 

Figure 1: Respiratory mechanics and ventilatory load parameters over time of patients with very severe COVID‑19‑related ARDS. (a) Tidal volume, ml/kg; (b) Driving 
pressure, cmH2O; (c) Plateau pressure, cmH2O; (d) Compliance of the respiratory system, ml/cmH2O; (e) Minute Ventilation, mL/kg/min; (f) Mechanical Power, J/min. 

*P < 0.05, random effect model multiple comparisons with baseline. ARDS: Acute respiratory distress syndrome
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hypothermia. Third, the results cannot be extrapolated 
to other hypothermia devices.

Conclusion

We report the use of very low‑VT ventilation (≈4 mL/kg 
PBW) combined with MTH allows decreasing ventilatory 
load and maintaining ventilatory parameters within 
safety limits. This approach might be helpful in the 
rescue of patients with severe ARDS due to COVID‑19 
and severely decreased CRS.
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