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Abstract:
OBJECTIVES: Accurate differentiation between ventricular tachycardia (VT) and supraventricular 
tachycardia (SVT) with aberrant conduction in wide complex tachyarrhythmias (WCT) remains a 
significant challenge in emergency medicine. This study aimed to evaluate the efficacy of deep 
learning (DL) models, specifically pretrained residual network (ResNet) architectures, in classifying 
these arrhythmias using electrocardiography (ECG) data.
METHODS: A retrospective cross‑sectional study was conducted, analysing 652 WCT ECGs and 248 
normal sinus rhythm ECGs from an emergency medicine clinic. Three ResNet models ResNet‑18, 
ResNet‑34, and ResNet‑50 were fine‑tuned using transfer learning. Model performance was assessed 
via 10‑fold cross‑validation, evaluating accuracy, sensitivity, and precision.
RESULTS: All ResNet models demonstrated high and consistent performance, achieving 95% 
accuracy, precision in distinguishing VT from SVT with aberrant conduction. The models exhibited 
robust generalization across validation folds.
CONCLUSION: DL models, particularly ResNet architectures, show promise in enhancing ECG‑based 
diagnosis of WCT. Their integration into emergency care could improve diagnostic accuracy, especially 
in settings with limited access to specialized cardiac expertise.
Keywords:
Computational medicine, deep learning, electrocardiography interpretation, supraventricular 
tachycardia, ventricular tachycardia, wide complex tachycardia

Introduction

Timely and accurately diagnosing cardiac 
arrhythmias is a critical challenge in 

emergency care. Among the diagnostic tools 
available, electrocardiography (ECG) is the 
most widely utilized tool for diagnosing 
and monitoring cardiovascular diseases. It 
is recommended that an ECG be obtained 

within 10 min of the patient’s arrival in the 
emergency department or ideally, during 
the initial contact with emergency medical 
services before hospital admission. The 
ECG must be immediately interpreted by a 
qualified physician. This early evaluation is 
essential for prompt risk stratification and 
timely initiation of appropriate treatment, 
especially in patients presenting with 
acute cardiac symptoms.[1] Its adoption 
is further supported by its ease of access, 
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affordability, reliability, and noninvasive nature, which 
collectively make it a key tool in the field.[2] The accurate 
interpretation of ECGs is equally important, as it directly 
informs patient diagnosis and treatment decisions. 
While this task often relies on experienced healthcare 
professionals, human error is still a possibility.

To mitigate this issue, computerized ECG interpretations 
have been developed over the past few decades, aiming 
to reduce variability and improve diagnostic consistency. 

As computational methods have evolved, DL, a subfield 
of artificial intelligence, has emerged as a powerful tool 
in computerized medicine. DL models, particularly 
convolutional neural network (CNN),[3] are inspired by 
the structure of the human brain and excel at recognizing 
patterns within complex data such as images, signals, 
and time‑series data. These models learn directly from 
raw data, requiring minimal preprocessing, and have 
been shown to outperform traditional approaches in 
tasks such as image recognition, speech processing, and 
medical diagnostics.[4]

CNN’s such as ResNet have demonstrated remarkable 
success in a variety of medical imaging tasks, including 
skin cancer classification, diabetic retinopathy detection, 
and radiographic image interpretation.[5] In the context 
of cardiovascular diagnostics, CNNs have also shown 
strong performance in classifying ECG signals, often 
outperforming traditional rule‑based systems. Their 
ability to learn hierarchical representations directly 
from visual or waveform data allows for robust 
feature extraction, even in noisy or variable clinical 
environments.[6]

Importantly, timely and accurate arrhythmia classification 
is both a diagnostic challenge and a crucial part of 
effective treatment planning. Treatment pathways for 
ventricular and supraventricular tachycardias  (SVTs) 
differ significantly, ventricular tachycardia  (VT) often 
requires immediate defibrillation or antiarrhythmic 
agents, while SVT may be managed with vagal 
maneuvers or atrioventricular  (AV) nodal blockers. 
Misclassification can delay appropriate intervention 
and increase the risk of adverse outcomes, particularly 
in hemodynamically unstable patients. Therefore, 
any tool that improves diagnostic precision has direct 
implications for patient safety and care.[7]

Studies have shown that DL‑based ECG analyses can help 
diagnose conditions such as cardiomyopathies, aortic 
stenosis, rhythm disorders, and hyperkalemia.[8‑10] One 
important and challenging use case in emergency settings 
is distinguishing between VT and SVT with aberrancy 
when the ECG shows a wide QRS complex. Making this 
distinction quickly and accurately is essential, as mistaking 
VT for SVT can lead to inappropriate management 
particularly the administration of AV nodal blocking 
agents such as beta‑blockers, calcium channel blockers, or 
adenosine, which are often effective for SVT but potentially 
dangerous in the setting of VT. In patients with VT, these 
medications may further lower blood pressure, increase 
hemodynamic instability, and, in some cases, trigger 
ventricular fibrillation or even cardiac arrest.[11,12]

Therefore, failure to correctly identify VT can result 
in delayed or incorrect treatment, directly increasing 

Box‑ED Section
What is already known on the study topic?
•	 Cardiac arrhythmia diagnosis remains a critical 

challenge in emergency medicine where 
electrocardiography (ECG) is the primary diagnostic 
tool. Deep learning  (DL) models, particularly 
Residual Networks (ResNet), have shown promise 
in medical diagnostics, demonstrating effectiveness 
in detecting various cardiac conditions such as 
cardiomyopathy, arrhythmias, and aortic stenosis.

What is the conflict on the issue? Has it 
importance for readers?
•	 Traditional clinical algorithms, including Brugada 

and Vereckei, exhibit limitations in distinguishing 
wide complex tachyarrhythmias  (WCT). In 
addition, many studies rely on synthetic data 
or small, nonrepresentative samples, limiting 
their real‑world applicability. This issue is 
particularly important for clinicians, as artificial 
intelligence‑based systems could offer valuable 
support in the emergency settings where cardiology 
expertise may not be easily accessible.

How is this study structured?
•	 The study employs a  retrospect ive and 

cross‑sectional design, analyzing 652 WCT 
ECGs and 248 normal sinus rhythm  (NSR) 
ECGs. ResNet‑18, ResNet‑34, and ResNet‑50 
models were adapted using transfer learning. 
Performance metrics, including accuracy, precision, 
and sensitivity, were assessed through 10‑fold 
cross‑validation to ensure reliability.

What does this study tell us?
•	 The study demonstrates that ResNet models 

achieved 95% accuracy, sensitivity, and precision 
in distinguishing WCT rhythms, which are a 
common diagnostic challenge in clinical practice. 
The findings suggest that these models can improve 
diagnostic accuracy and efficiency, especially 
in settings with limited access to cardiology 
specialists. Nevertheless, the study acknowledges 
certain limitations, including single‑center data 
collection, class imbalance, and the absence of 
electrophysiological validation, which may affect 
generalizability.
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the risk of morbidity and mortality. Although several 
ECG‑based algorithms have been proposed to support 
this differentiation including Brugada, Vereckei, and 
the more recent limb lead algorithm many are complex, 
require significant training, and show variable accuracy 
in the real‑world settings.[11‑13] This underscores the need 
for accurate, fast, and user‑independent tools that can 
assist clinicians in making critical diagnostic decisions 
under time pressure.

In this context, this study explores the accuracy of DL 
models, specifically pretrained ResNet architectures that 
specialized CNNs known for their ability to learn deeper 
features from images, in distinguishing between VT and 
SVT with aberrant conduction within WCT. Using the 
real‑world ECG data, emergency physicians evaluated 
the system to assess its potential for practical application 
in the clinical settings and bedside diagnostics.

Methods

Data collection and processing
This study was conducted in the Adult Emergency 
Medicine Clinic of Ankara Bilkent City Hospital between 
November 2021 and March 2023, focusing on patients 
over 18 years old presenting with symptoms including 
palpitations, dizziness, dyspnea, chest pain, or syncope. 
Artifact‑free ECGs with NSR and WCT were included in 
the study. ECGs were recorded using General Electric™ 
Healthcare Mac 200 devices (Made in India, GE Medical 
Systems Information Technologies, 2019) and stored in 
the Muse System. Ethical approval for this study was 
carried out following the approval decision numbered 
E2‑22‑2645, which was given on November 23, 2022, 
based on our application to the ethics committee number 
2 of Ankara Bilkent City Hospital.

The 12‑lead ECGs were exported from the Muse system in 
the digital image format (JPEG), preserving the standard 
clinical layout used in diagnostic workflows. All images 
were converted to grayscale, cropped to remove margins 
and text labels, and resized to 224 × 224 pixels. Only the 
waveform area was preserved. ECGs with excessive 
noise, baseline wander, lead detachment, or other visual 
artifacts were excluded during manual review. This 
preprocessing ensured consistency in lead positioning 
and minimized formatting variability.

The research adopted a retrospective cross‑sectional 
design, with initial filtering based on specific criteria 
such as age, date, QRS width, and rhythm type, resulting 
848 WCT ECGs. During the initial data collection phase, 
we observed a substantial number of ECGs exhibiting 
NSR. Considering common DL methodologies, which 
recognize that a moderate sample of normal cases can 
effectively support model training, we randomly selected 

250 NSR ECGs. This approach addressed potential class 
imbalance while maintaining computational efficiency. 
By deliberately limiting the normal case population, we 
ensured the model could develop robust discriminative 
capabilities without overfitting to the predominant class, 
thus preserving its generalizability across diagnostic 
categories. After eliminating the poor‑quality, artifact 
containing, and repetitive recordings, the dataset is 
narrowed to 652 WCT ECGs and 248 NSR ECGs.

All ECGs underwent a review process to ensure a 
complete and accurate classification. The recordings 
were anonymized to remove computer interpretations 
and filters and then independently evaluated by 
cardiology faculty members with expertise in 
dysrhythmias. When evaluations differed, a consensus 
meeting moderated by the emergency medicine 
professor was convened to reach a unanimous 
classification. Figure  1 provides representative 
examples of the three diagnostic categories included 
in the study: NSR, SVT‑including AV nodal re‑entry 
tachycardia (AVNRT), and VT. These ECGs illustrate 
the characteristic visual patterns used by experts 
during labeling, including QRS morphology, rhythm 
regularity, and AV association. Detailed visual 
interpretation supports both the manual review process 
and the model’s learning of morphological features.

The labeling of ECGs into NSR, SVT, and VT classes 
was based on established clinical diagnostic criteria 
and reviewed by board‑certified cardiology faculty. In 
the case of WCT, further subclassification into VT and 
SVT with aberrancy (e.g. AVNRT with bundle branch 
block) was performed using standard ECG markers. 
These included QRS duration, regularity, presence 
or absence of AV dissociation, capture/fusion beats, 
and axis deviation. When disagreements arose among 
reviewers, a consensus diagnosis was reached during a 
joint session moderated by a senior emergency medicine 
professor.

For classification purposes, the following ECG markers 
were used:
•	 QRS duration >120 m was considered a WCT
•	 Regular rhythm with no visible P‑waves and 

retrograde  P‑waves following QRS suggested 
AVNRT

•	 AV dissociation, capture/fusion beats, and extreme 
axis deviation were considered strong indicators of 
VT

•	 Response to vagal maneuvers or adenosine  (when 
available in the patient record) was also considered 
when differentiating AVNRT from VT.

In this study, AVNRT was not treated as a separate diagnostic 
class but included under the broader SVT category, 
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in line with standard clinical and electrophysiological 
classification. The final dataset comprised 583 SVT ECGs, 
69 VT ECGs, and 248 NSR ECGs.

Pretrained convolutional neural network models 
for electrocardiography classification
In this study, we used CNNs, a type of DL model widely 
used for image classification tasks, to classify ECGs into 
NSR, SVT, and VT. CNNs are particularly efficient at 
analyzing visual data, drawing inspiration from how the 
human visual cortex processes images. Unlike traditional 
approaches that require manual feature extraction, CNNs 
can automatically learn and identify relevant features 
from raw input data. In ECG analysis, this capability is 
crucial for detecting subtle patterns that might escape 
human observation.

The ResNet models were trained on image‑based 
representations of ECGs rather than raw waveform 
signals. Each ECG was treated as a visual input, leveraging 

the spatial structure of standard 12‑lead layouts. Transfer 
learning was applied to adapt the pretrained CNNs to 
the three‑class classification task [Figure 2]. Although 
we initially tested data augmentation methods such 
as minor rotation, scaling, and contrast changes, these 
were excluded from final training due to their potential 
to introduce clinically irrelevant variability. The decision 
to use image‑based inputs was guided by the established 
interpretability of ECG images in clinical practice and the 
high performance of CNNs on structured visual data.

We utilised ResNet‑18, ResNet‑34, and ResNet‑50 
architectures,[14] which were pretrained on large‑scale 
datasets like ImageNet.[15] This pretraining allows them 
to effectively capture fundamental image features. Our 
implementation in PyTorch, an open‑source Python library, 
leveraged these pretrained networks, adapting them to 
our specific ECG classification task. We modified the final 
classification layer to match our three‑class problem (SVT, 
VT, and NSR), a technique known as transfer learning. All 
models were trained using the Adam optimizer with an 
initial learning rate of 1e‑4, selected for its adaptive learning 
capabilities and robust performance in DL tasks.

To address the inherent class imbalance, particularly the 
limited number of VT ECGs, we employed a weighted 
cross entropy loss function instead of traditional 
oversampling techniques. This approach assigns higher 
weights to minority classes during training, ensuring 
balanced learning without duplicating samples, thus 
mitigating the risk of overfitting and preserving clinical 
data integrity.

The performance was evaluated using 10‑fold 
cross‑validation using multiple complementary 
metrics: accuracy  (overall correct classifications), 
precision  (exactness of positive predictions), 
sensitivity (ability to correctly identify positive cases), 
and the F1 score (harmonic mean of precision and recall), 
providing a nuanced understanding of the model’s 
diagnostic capabilities.

Figure 1: Representative 12‑lead electrocardiography images used in model 
training, (a) normal sinus rhythm, (b) supraventricular tachycardia, (c) ventricular 

tachycardia

Figure 2: Overview of the three‑class electrocardiography (ECG) classification 
framework‑a deep learning‑based approach integrating ECG images and patient 

demographic data for classifying supraventricular tachycardia, ventricular 
tachycardia, and normal sinus rhythm
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Statistical analysis and data interpretation
Statistical analyses were performed using IBM SPSS 
Statistics for Windows, version 20.0 (IBM Corp., Armonk, 
N.Y., USA), employing a comprehensive analytical 
approach to evaluate the data. The methodology 
contains multiple statistical tests, including the Pearson 
Chi‑square test for categorical data analysis, the Shapiro–
Wilk test for normality assessment, and the Kruskal–
Wallis test for examining nonnormally distributed 
parameters. To mitigate potential type  I error  (false 
positives) rates, a Bonferroni correction was applied 
during subgroup analyses, enhancing the reliability of 
statistical inferences.

Concordance analysis utilized Cohen’s kappa test 
to assess inter‑rater agreement, with a standardized 
interpretation framework: Moderate agreement was 
defined as 0.41–0.60, good agreement as 0.61–0.80, and 
very good agreement as 0.81–1.00. A  comprehensive 
diagnostic evaluation was performed, which included 
key performance metrics such as specificity, sensitivity, 
likelihood ratios, predictive values, and overall accuracy 
rate. The priori significance level was established at 
P  <  0.05, providing a robust statistical framework to 
interpret the study findings and draw meaningful 
conclusions.

Results

A total of 900 patients were included in the study, with 
a mean age of 57 ± 17  years and 61.4% were female. 
There was a high level of agreement between the initial 
interpretations of the two cardiologist reviewers who 
constituted a component of the reference diagnostic 
test  (agreement rate: 95%; kappa  =  0.896). In the 5% 
of cases where discrepancies were observed, the 
final diagnosis was established through a consensus 
meeting involving the emergency physician and the two 
cardiologists. Based on the reference diagnosis, 64.8% of 
patients were classified as SVT, 7.7% as VT, and 27.6% as 
NSR. The gender distribution was similar across these 
diagnostic groups  (P  =  0.366). However, a significant 
difference in the mean age was observed, with the NSR 
group having a lower average age (SVT: 63 ± 15 years; 
VT: 62 ± 15 years; NSR: 44 ± 15 years; P < 0.001). The age 
distribution between the SVT and VT groups was not 
significantly different.

We evaluated the performance of three ResNet 
models  (ResNet 18, ResNet 34, and ResNet 50) using 
comprehensive computational performance metrics and 
statistical analyses. After excluding ECGs labeled as NSR, 
diagnostic value analyses were conducted using 2 × 2 
contingency tables to distinguish between VT and SVT 
with aberrant conduction. The comparative statistical 
performance of the three ResNet models is summarized 

and illustrated in Figures 3‑5 which include confusion 
matrices, receiver operating characteristic curves, and 
precision‑sensitivity curves. The agreement between the 
reference diagnostic method and the ResNet models in 
distinguishing SVT from VT was also evaluated using 
kappa analysis. The kappa coefficients for ResNet‑18, 
ResNet‑34, and ResNet‑50 were found to be 0.644, 0.650, 
and 0.676, respectively. In addition, 95% confidence 
intervals  (CI) for accuracy, sensitivity, and specificity 
were computed for each model and are presented in 
Table 1.

Key performance findings for VT prediction 
(dichotomized‑VT vs. not):
•	 Area under the curve: ResNet‑18  =  0.912  (0.865–

0.959), ResNet‑34  =  0.949  (95% CI: 0.921–0.976), 
ResNet‑50 = 0.928  (0.884–0.973); P < 0.001 for all 3 
models

•	 Accuracy: All three models achieved a consistent 95% 
accuracy

•	 ResNet‑34 exhibited the most specific predictions
•	 ResNet‑50 showed the highest sensitivity [Table 1].

While numerical variations were observed between 
the classical statistical and computational performance 
analyses, the results demonstrated a strong correlation. 
It is crucial to note the methodological differences 
between traditional statistical regression models and 
more complex DL approaches when interpreting these 
findings. The comprehensive performance metrics 
suggest that all three ResNet models performed 
comparably, with subtle variations in specific aspects 
of diagnostic prediction.

Discussion

Our study demonstrated that ResNet‑based DL 
models can achieve high diagnostic performance in 
distinguishing VT/SVT in WCTs, a diagnostic challenge 
frequently encountered in emergency medicine. 
The models achieved accuracy levels up to 95.0% 
highlighting their clinical potential for fast and accurate 
rhythm classification.[16]

Traditional rule‑based algorithms, such as the Brugada 
and Vereckei criteria, have shown diagnostic accuracies 

Table 1: Performance metrics with 95% confidence 
intervals
Model Accuracy Sensitivity Specificity
ResNet‑18 0.950 

(0.934–0.962)
0.609 

(0.491–0.715)
0.984 

(0.973–0.991)
ResNet‑34 0.951 

(0.935–0.963)
0.609 

(0.491–0.715)
0.986 

(0.975–0.992)
ResNet‑50 0.952 

(0.936–0.964)
0.710 

(0.594–0.804)
0.976 

(0.963–0.984)
ResNet: Residual network
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between 75% and 85%, depending on clinician expertise 
and interpretation consistency. Moreover, emergency 
physicians often achieve VT/SVT differentiation 
accuracy between 70% and 80% in high‑stress scenarios.[17] 
Compared to these conventional approaches, our ResNet 
models demonstrated more consistent and higher 
diagnostic performance, underscoring the added value 
of DL as a decision‑support tool in time‑sensitive 
clinical environments. An increasing number of studies 
highlight the potential of artificial intelligence in 
interpreting ECGs developed DL models that is capable 
of detecting arrhythmias from ambulatory ECGs with 
cardiologist‑level performance.[6] Rabinstein et  al.[18] 
emphasised the ability of artificial intelligence (AI) models 
to detect latent features in ECGs by identifying silent 
atrial fibrillation during sinus rhythm. Furthermore, 
Ribeiro et al.[19] trained their model on over two million 
12‑lead ECGs and demonstrated superior diagnostic 
accuracy compared to human experts.

These findings align with our study, in which DL 
models captured subtle waveform features to achieve 
high sensitivity even in diagnostically ambiguous 
cases. Recent benchmark studies further support 
the efficacy of CNN‑based architectures in ECG 
classification. Strodthoff et  al.[20] evaluated multiple 
DL models including ResNet on the PTB‑XL dataset 

and demonstrated reliable performance using visual 
representations of ECG signals. Our study builds on this 
approach by applying ResNet architectures, originally 
developed for general image recognition to ECG image 
classification, illustrating the versatility of these models 
in medical signal analysis.[14]

It is important to note that in our study, AVNRT was 
not treated as a separate class but was categorized 
under the broader SVT group, consistent with clinical 
and electrophysiological classification standards.[21] ECG 
labeling was performed using established diagnostic 
criteria, including QRS duration, regularity, presence 
of AV dissociation, capture/fusion beats, and axis 
deviation. Any disagreements were resolved through 
consensus review by board‑certified cardiology and 
emergency medicine faculty, ensuring labeling quality 
and clinical accuracy.

An important limitation of our dataset was class 
imbalance: VT cases accounted for only around 10% 
of the total. Although all models consistently achieved 
high sensitivity, their specificity differed between 
architectures, indicating a bias toward the majority 
class. This class imbalance may have led to a reduction 
in the model’s ability to correctly identify VT cases 
in certain instances. Future studies should explore 

Figure 3: Performance evaluation of ResNet‑18, (a) receiver operating characteristic curve illustrating the trade‑off between true positive rate (sensitivity) and false positive 
rate across varying thresholds, (b) precision‑recall curve showing the relationship between precision and recall, (c) confusion matrix presented as a heatmap, visualising true 

positives, false positives, true negatives, and false negatives, and (d) performance metrics table summarising key classification measures

dc

ba
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class balancing strategies such as oversampling, 
class weighting, and synthetic data generation to 
improve minority class detection.[22,23] In addition to 
their technical performances, these models also hold 
significant promise for expanding access to cardiac 
diagnostics in low‑resource settings. In rural clinics 
and underserved regions where cardiology expertise 
is limited or unavailable, AI systems could serve as 
initial screening tools or second‑opinion systems for 
local healthcare providers. As shown in the study by 
Jo et al.,[24] these tools offer the potential for real‑time, 
cost‑effective support at the point of care, improving 
both diagnostic speed and accuracy in critical scenarios.

Despite these promising results, integrating DL models 
into real‑world clinical practice remains complex. 
Factors such as dataset quality, rhythm diversity, model 
generalizability, and algorithm interpretability must be 
addressed. Future research should emphasize external 
validation, clinical trial testing, and bias mitigation to 
ensure safe, equitable, and effective deployment across 
the diverse healthcare settings.[10]

Limitations
Several important limitations should be considered in this 
study. First, the research was conducted retrospectively 
at a single center, which may limit the generalizability 

of the findings. Additionally, the ECGs of most patients 
were not recorded in the system, preventing the 
application of sequential data collection principles. 
Another limitation is the disparity in the number of VT 
ECGs compared to SVT and NSR ECGs, as VT rhythms 
are less common. This imbalance, which aligns with 
clinical practices and existing literature, results in an 
unbalanced dataset a common challenge in DL studies.[6] 
Lastly but importantly, while ECG evaluations were 
performed by cardiologists and considered the gold 
standard for diagnosis, electrophysiological evaluations 
would offer a more reliable gold standard, potentially 
enhancing the study’s accuracy.

Moreover, clinical parameters, such as the presence 
of structural heart disease, results from previous 
electrophysiological studies, arrhythmia history, and 
whether the arrhythmia episode was new‑onset or 
recurrent, were not available during the labeling or 
model training process. Although ECG morphology is 
central to diagnosis, these clinical factors significantly 
influence expert interpretation in the real‑world settings. 
Their absence in the dataset limits the ability to fully 
replicate clinical diagnostic reasoning. Future work 
integrating both clinical and visual data could improve 
performance and real‑world applicability.

Figure 4: Performance evaluation of ResNet‑34, (a) receiver operating characteristic curve illustrating the trade‑off between true positive rate (sensitivity) and false positive 
rate across varying thresholds, (b) precision‑recall curve showing the relationship between precision and recall, (c) confusion matrix presented as a heatmap, visualising true 

positives, false positives, true negatives, and false negatives, and (d) performance metrics table summarising key classification measures

dc

ba
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Conclusion

The exploration of ResNet models reveals more 
than computational capability, it demonstrates a 
transformative approach for enhancing cardiac rhythm 
diagnostics. While these models show promising 
diagnostic potential, their true value emerges through 
patient‑focused development, requiring carefully curated 
datasets, continuous validation, and a commitment to 
patient safety.

Our research represents a meaningful step toward 
transforming how emergency clinicians approach 
complex rhythm analysis, using technological innovation 
as a strategic ally in improving patient outcomes. The 
implementation of these systems is not about replacing 
clinical expertise, it is for creating powerful diagnostic 
companions. By systematically refining these models 
in the real‑world clinical settings, we can reduce 
interpretation errors and accelerate diagnostic precision, 
particularly in environments with limited cardiac 
specialist resources.
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Figure 5: Performance evaluation of ResNet‑50, (a) receiver operating characteristic curve illustrating the trade‑off between true positive rate (sensitivity) and false 
positive rate across varying thresholds, (b) precision‑recall curve showing the relationship between precision and recall, (c) confusion matrix presented as a heatmap, 

visualizing true positives, false positives, true negatives, and false negatives, and (d) performance metrics table summarizing key classification measures
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